A Geochemist's Tale: Reconstructing Environmental Conditions over Earth History

David A. Fike

Myron & Sonya Glassberg/Albert & Blanche Greensfelder Distinguished University Professor, Chair, Department of Earth & Planetary Sciences Director, International Center for Energy, Environment, & Sustainability (InCEES) Director, Environmental Studies Program

14 April 2023

50 µm

Exploring the World's Modern & Ancient Environments

space

Depositional Conditions

A Geochemist's Tale: The History of Atmospheric Oxygen

Pyrite (FeS₂)

- What is it?
- How did it get there?

- N₂: 78%
- O₂: 21%
- Ar: 0.9%
- CO_2 : 0.04% = 400 ppmv = parts per million (by volume)
- CH_4 : 1.866 ppmv = 1866 ppbv = parts per billion (by volume)

- N₂: 78%
- O₂: 21%
- Ar: 0.9%
- CO_2 : 0.04% = 400 ppmv = parts per million (by volume)
- CH_4 : 1.866 ppmv = 1866 ppbv = parts per billion (by volume)

- N₂: 78%
- O₂: 21%
- Ar: 0.9%
- CO_2 : 0.04% = 400 ppmv = parts per million (by volume)
- CH₄: 1.866 ppmv = 1866 ppbv = parts per billion (by volume)

The History of Oxygen in the Atmosphere

The History of Oxygen in the Atmosphere

The History of Oxygen in the Atmosphere

Oyxgenic Photosynthesis: How Cyanobacteria Make O₂

"Oxygenic" Photosynthesis

Importance of cyanobacteria

Evidence for rise of O₂ from the rock record

Red Beds – hematite coated detrital sediments

2.0 Ga red beds at Lake Segozero, Russian Karelia

Banded Iron Formation

Formation of Iron Formations

Paleosols: Ancient Soil Horizons

Paleosols – indicators of weathering regimes

- Ancient soil horizon
- Immobile elements (AI, Ti, Zr) and mobile elements (Ca, Mg, Na, K).
- Redox sensitive elements (Fe, Mn).

Organic biomarkers relevant for pO₂

Hopanes (cyanobacteria)

(56) Bacteriohopanepolyols (BHP)

Organic biomarkers relevant for pO_2 Steranes (eukaryotes) Hopanes (cyanobacteria) HO (65) Cholesterol OH 22 OH Ζ X = -H, -OH26Y = -H, -OHZ = -OH, various -OR, and -NHR substituents (56) Bacteriohopanepolyols (BHP) (66) Steranes (a) R = H (cholestane); (b) R = Me (ergostane);

(c) R = Et (stigmastane); (d) R = n-Pr (24-n-proplycholestane);
(e) R = i-Pr (24-isopropylcholestane).

Sulfur-bearing Minerals Record Initial Appearance of Ozone

Geologic indicators show atmospheric O_2 was low prior to ~2.2 Ga

Huronian Supergroup (2.45-2.2 Ga)

S. Roscoe, 1969

What's the connection between glaciation and appearance of O_2 in the atmosphere?

- Methane (CH₄) is a very potent greenhouse gas and was thought to be abundant on the early Earth
- Oxygen destroys methane by oxidizing it to CO₂
 - CO₂ is also a greenhouse gas but much less potent
- Loss of methane results in a drop of global temperatures

Colonization of the Land by Plants

Plants Invade the Land

- First unambiguous spores: 475Ma, Libya
- First unambiguous sporophytes: ~430Ma, Cooksonia

From Wellman et al., *Nature* 2003: "Fragments of the Earliest Land Plants"

- First seeds: ~390Ma, 1 cm West Virginia, Elkinsia
- First trees: ~380Ma, Archaeopteris

The Rhynie Chert

William Mackie

The Rhynie Chert

Unpolished hand sample

Nonvascular plants and their spores

Vascular plants, preserved in place, with small leaves!

Stems

Early plant fossils

Spores and cones

Leaves and branches

Conifer cone

Rhynie Chert Flora

Arborescent Lycopods

Rise of Devonian Forests

Increase in ecosystem complexity and rooting depth through the Devonian.

Effects on biogeochemical cycles

In 50 million years, from this:

Evolution of Trees Draws Down CO₂ levels

And leads to glaciation

Time Ma

Berner 2006

Evolution of Trees Increases Atmospheric O₂ levels

Controls on long-term pO_2 : balancing production/consumption

Photosynthesis produces oxygen; aerobic respiration consumes it. Oxygen only accumulates in the atmosphere when organic carbon (and other chemically reducing phases like pyrite (FeS_2)) are buried in marine sediments, swamps, and lakes

Stable Isotope Analysis

Stable isotopes are non-radioactive versions of elements with different weights due to differing numbers of neutrons.

1) metabolic activity generates large isotopic differences between products and reactants

• which depend upon environmental & ecological conditions

2) isotopic composition of sedimentary phases are the best record of ancient conditions over Earth history.

Stable Isotope Analysis

Stable isotopes are non-radioactive versions of elements with different weights due to differing numbers of neutrons.

1) metabolic activity generates large isotopic differences between products and reactants

which depend upon environmental & ecological conditions

2) isotopic composition of sedimentary phases are the best record of ancient conditions over Earth history.

S isotopes:

³²S: 95.02%; ³³S: 0.76%; ³⁴S: 4.20%;

³⁶S: 0.02%

Canonically measure ³⁴S/³²S ratio: $\delta^{34}S = [(^{34}S/^{32}S)_{sample}/(^{34}S/^{32}S)_{std}-1]^*10^3, \% (V-CDT)$

Overview of the S cycle

Take away: higher $\delta^{34}S \rightarrow$ more pyrite burial \rightarrow more oxygen release to the atmosphere

Changes in Burial and Inferred Oxygenation

Late Cambrian (510 million years ago)

- Pulse of increased sedimentary burial of organic carbon and pyrite
- Interpreted to reflect pulse of oxygen release to the atmosphere

LETTER

doi:10.1038/nature09700

Geochemical evidence for widespread euxinia in the Later Cambrian ocean

Benjamin C. Gill¹[†], Timothy W. Lyons¹, Seth A. Young², Lee R. Kump³, Andrew H. Knoll⁴ & Matthew R. Saltzman⁵

A global perturbation to the sulfur cycle during the Toarcian Oceanic Anoxic Event

Benjamin C. Gill ^{a,b,*}, Timothy W. Lyons ^b, Hugh C. Jenkyns ^c

nature

Vol 444 7 December 2006 doi:10.1038/nature05345

LETTERS

Oxidation of the Ediacaran Ocean

D. A. Fike¹, J. P. Grotzinger¹[†], L. M. Pratt² & R. E. Summons¹

However, Observations Identify Multiple **Distinct Populations of Pyrite Crystals**

masses of nanocrystals

What if they have equally distinct geochemical signatures???

recrystallization

euhedral

Secondary Ion Mass Spectrometry (SIMS)

SIMS Measurements: Geochemical Analysis down to the micron scale

Allows for the smaller-scale inter- and intra-grain isotopic variability to be more easily assessed....

Need to investigate geochemical signatures across spatial scales

With novel micron-scale analytical techniques:

- 1. Access environmental information previously beyond our abilities
- 2. Document enormous geochemical variability between different populations in a single sample
 - Each of population encodes meaningful biological, and environmental information
- Demonstrate that previous inferences about past environments drawn from 'bulk' analyses need to be revisited
 - Working to revise the record of atmospheric oxygen over Earth History!

From research to teaching to administration...

Washington University in St. Louis

Pathfinder Fellows in Environmental Leadership

International Center for Energy, Environment and Sustainability

Department of Earth, Environmental & Planetary Sciences

|--|

Creation of 3 new majors (and associated minors): Earth Science, Environmental Science, and Planetary Science -- and a new minor in Geospatial Science.

We are eager to help lead the Chancellor's new vision for Environmental, Climate, and Sustainability work on campus, in the St. Louis region, and around the world.

