ATTEND CLASSES | FRIDAY, APRIL 21

Return to the classroom and feel that spark again. You are invited to join current undergraduates for lectures by some of our most prominent faculty. Seating is limited; first come, first served. See course descriptions below.

General Biochemistry
9 - 10 a.m. | Room 458, Louderman Hall
The focus of this course is human metabolism. Students will learn the major metabolic pathways that are used to acquire and utilize the free energy that is needed to carry out various physiological functions. Metabolism will be presented at the systems-level to highlight the interrelationships of pathways. Emphasis will be placed on metabolic regulation and the influence that this regulation has on human health. The role metabolism plays in diabetes and cancer will be studied in detail. Modern technologies used to study metabolism will also be covered. Students will learn how to apply these technologies to understand metabolic perturbations associated with disease.

Materials Science
10 - 11 a.m. | Room 101, Lopata Hall
Introduction to properties, chemistry and physics of engineering materials; conduction, semiconductors, crystalline structures, imperfections, phase diagrams, kinetics, mechanical properties, ceramics, polymers, corrosion, magnetic materials, and thin films; relationship of atomic and molecular structure to physical and chemical properties; selection of materials for engineering applications; relationships between physical properties, chemical properties and performance of engineering materials.

The Roman World
10 - 11 a.m. | Room 109, Seigle Hall
An introduction to the society and culture of the ancient Roman Republic and Empire. The "Roman World" began as a small settlement by the Tiber River and became a huge and diverse empire extending into three continents, with a cultural legacy that has lasted to this day. The course will cover key events over a millennium of Roman political history, but much of our time will be given to study and analysis of Roman concepts of national identity, moral and political thought, social hierarchies and dynamics, family, religion, and entertainment.

Introduction to Archaeology
11 a.m. – 12 p.m. | Room 100, Brown Hall
Archaeology plays a critical and unique role in understanding the human past. Through study of the methods and theories of archaeology, and a survey of important firsts in the human past, this course introduces students to the way archaeologists use material culture to reconstruct and understand human behavior. Chronologically ordered case studies from around the globe are used to look at social, ecological, and cultural issues facing humans from the earliest times to the present.
Practices in Architecture + Art + Design
11 a.m. - 12 p.m. | Room 60, Hillman Hall
This course offers first-year students in architecture and art an introduction to the subjects, theories and methodologies of the disciplines of art, design, architecture, landscape architecture and urban studies. Examples drawn from a range of historical periods as well as contemporary practice highlight distinct processes of thinking and working in each discipline, as well as areas of intersection and overlap supplemented by a series of presentations by faculty.

Physics of the Heart
12 - 1 p.m. | Room 204, Crow Hall

Introduction to Cultural Anthropology
1 - 2 p.m. | May Auditorium, Simon Hall
This course introduces the basic concepts, theories, and methods of Cultural Anthropology—an academic discipline that studies the diversity of human cultures and societies. The purpose is to provide a broad perspective on the types of research that anthropologists undertake, and to engage in a critical dialogue on how the work of anthropologists contributes to understanding the human condition. Although anthropologists have traditionally focused their research on remote locales, this course is not just about studying exotic others; it is about understanding the increasingly global nature of our own society.

Mass Transfer Operations
1 - 2 p.m. | Room L0160, Green Hall
Stagewise and continuous mass transfer operations, including distillation, gas absorption, humidification, leaching, liquid extraction, and membrane separations.